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DIFFUSION PROBLEMS IN BONDED NONHOMOGENEOUS
MATERIALS WITH AN INTERFACE CUT

by
Fazil Erdogan and Murat Ozturk
Lehigh University, Bethlehem, PA 18015
ABSTRACT

In this paper the mixed boundary value problem for a nonhomogeneous medium
bonded to a rigid subspace is considered. The main objective is to investigate the
techniques that wonld lead to analytically tractable solutions and to provide examples
comparing the results of various kinds of material nonhomogeneities. The problem
studied is a two dimensional diffcion problem in which the interface contains a plane
crack. An elastic medium under antiplane shear loading is used to formulate the
problem. However, the results may be interpreted in terms of any number of steady-
state diffusion phenomena. The method used is essentially an inverse method in the
sense that it provides the material constitutive behavior for which the mixed boundary
value problem can be solved rather than solving the problem for a given material. Two

different methods are described and some numerical examples are given.
1. Introduction

Increasing concerns in recent years with mechanical failure initialing at the
interfacial regions in many technologically important multiphase materials require a
better understanding of the interaction between flaws that may exist in these regions
and the applied loads and other environmental factors. The conventional approach to
studving the thermomechanics of such materials is based on the assumption that the
composite medium is piecewise homogeneous and the flaws may be represented by plane
cuts or cracks. On the other hand in most bonded materials the interfacial region
appears to have a structure which is generally different than that of the adjacent
materials. In many cases, such as in plasma spray ceoating, sputtering, ion plating and
in some diffusion bonded materials, the thermomechanical properties of the region are

“graded” in the sense that the interfacial region is a nonhomogeneous continuum of
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finite thickness with very stecp property gradients [1]. [2]. Among other applications of
bonded nonhomogeneous materials one may mention certain geophysical materials with
naturally graded compositions such as shale/sandstone and materials which have highly
temperature dependent properties and are under steep temperature gradients. However,
perhaps the most important reason for studying the diffusion and fracture problems in
bonded nonhomogeneous materials is the technological potential of the so-called
functionally gradient materials (FGM). These are the multiphase materials, interlayers
and coatings synthesized in such a way that the volume fractions of the constituents are
varied continuously in thickness direction to give a predetermined composition profile
(3] - [9]. The material thus obtained is known to have some wide ranging highly
desirable properties. From the viewpoint of failure mechanics some of these properties
are reduced thermal stresses, residual stresses and stress concentration factors (3],
improved bonding strength [6], and improved toughness and corrosion and fatigue crack
growth resistance. Most of the current research on FGMs appears to be in the area of
ceramic coatings motivated by a variety of thermal shielding problems and in growing

superconducting or diamond films over homogencous substrates [3].

The general problem of interest here is the heat diffusion and the fracture
mechanics problems in a medium that consists ot a nonhomogeneous layer bonded to a
homogeneous substrate and contains an interface crack. The primary objective is to
investigate the techniques which would lead to analytically tractable solutions of the
elated mixed boundary value problems and to provide some examples comparing the
results of various kinds of material nonhomogeneities. To do this we consider a problem
which is relatively simple to work with and yet has all the analytical features that need
to be investigated. The problem studied here is a two-dimensional diffusion problem for
a nonhomogeneous medium bonded to a rigid half space having a crack along the
interface. Even though the terminology used will be that of an elasticity problem for a
medium under antiplane shear loading, the results may be interpreted in terms of any

number of diffusion phenomena.
2. Formulation of the Problem - A Direct Method

Consider the antiplane shear proulcr: for a semi infinite nonhomogeneous elastic

medium shown in Fig. 1. It is assumed that the medium is bonded to a rigid half spacc
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along the y=0 plane. the interface contains a crack on y=0, -a<x<a, and the medium is
subjected to arbitrary antiplanc shear loading which may be mechanical or thermal in
origin. It is also assumed that the problem is solved under actual loading conditions in
the absence of a crack and through a proper superposition is reduced to a local
perturbation problemn in which the crack surfac tractions are the only non-zero external
loads. Furtherrucre, if we assume that the shear modulus 4 is a function of y only, the

non-vanishing stress components and the equilibrium equation may be expressed as

T =hGe 0 =nGE (2.1)
)
#v~u¢§‘;g—3’ (2.2)

where w is the = compoenent of the displacement vector. In the crack problem under

consideration ({2.2) will have to be solved under the following mixed boundary

conditions:
7,.(2,0) =05(2), —a<z<a
w(z,0) = 0,a< 7 <2, (2.3)

7, (r) being the known crack surface traction.

Let the solution of (2.2) bLe given by

w(zr.y) = 71: /ao F(y.a) e~ 1T do. (2.4)

-

& F dF _ ap _ 2
where
) = -4 (ul = L‘M 26
ply) =g log wty) = = W) (2.6)

If we replace the unknown function F' by H so that

-3-




_1
Flya) = Hiva) exp| -} [*p (8 di] = H (5] (s () . .7
equation (2.5) becomes
%ﬁ—{—i P2+23—§+4QZ>H=0. (2.8)

We will now look for a particular class of functions u(y) for which (2.8) has an
analytical solution. The simplest of such class of functions are obtained by assuming
that

i
r

P°=c (2.9)

)
|

;LI a.
@
v

b

where ¢y i1s a constant. Three classes of functions satisfying (2.9) may thus be obtained

as follows:

(a) co=3°:
p(y) = 723 . uly) = pocap (F23y) (2.10)
ply) =23 coth (3y+8) . p (y) = po sinh*(3y+6) , (2.11)
ply) = 23 tank(3y + &), uly) = o cosh¥( 3y +6) ; (2.12)
(b) co= -3
ply) = =23 tanBy+8) 1 (W) = 5Ty (2.13)
p(y) =23 cof(3y+6) , uly) = po sin*(Jy+8) ; (2.14)
(¢c) ¢, =0;
p(y) =0, ply) = po (2.15)
ply) = J;ie py)=ng (3 P, (2.16)




where 3, 4, and y, are arbitrary counstants (gy > 0).

From (2.8) and (2.9) it is scen that

f—yﬁ-f—xmzo, N=alge, \=(al+e/? (2.17)

Formally. from (2.4), (2.11) and (2.17) we now obtain

1/2 o
wis,y) = ,,1__ ##(oy)> / . Ala) ezp( — Ay —1az) da (2.18)

o0

where the constant u, is introduced for dimensional considerations and the function A is
unknovwn to be determined from (2.3). The physics of the problem requires that w = 0
for y» . Thus, from (2.17) and (2.13) it may be observed that A defined by
A = (a? + ¢o)'/? must be positive for all values of « and, therefore, the negative values of
¢y or shear moduli given by (2.13) and (2.14) would not be acceptable for the solution

expressed by (2.18). From (2.1) and (2.13) tlie stress components are found to be

-1/2 _
o, = -—gl: (ﬂy(oy)> /x iadia) ezp( — Ay — iaz) do (2.19)
& -0
- 1 ﬂ_l/z/m < .;l,/> S P
Ty: = ~ 5z <# (y)> . M5 Ale) ezp( — Ay —iaz) da. (2.20)

By substituting from (2.18) and (2.20) into (2.3) one would obtain a pair of dual
integral equations to determine A(a). The problem may also be reduced to an integral

equation by defining
9 z,0) = 2.21
aJ:w(z,)—g(:r). (2.21)
From (2.3b), (2.18) and (2.21) it may thus be seen that

(Li(%))l/ Ciad (@)=~ [* g enta (2.22)

Substituting now from (2.20) and (2.22) into (2.3a) we obtain

m L 1% gttt [ Kiya)d®' = Dda = 0,,(20) = oo(a), —a<z<a
y w -a -0 (223)
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where

Auly) + w' () /2
K(y,a) = #\y)tau(y)/’c-,\y‘ (2.24)

To investigate and to separate a possible singular part of the kerne! in (2.23), the
asymptotic behavior of the inner integral for |a |- oo must be examined. From (2.17)
it is seen that A -+ |a for {a] - >. Thus, for |a| » 2o from (2.24) we obtain

Kofya) =228l - lely, (

e 2.25)

By adding and subtracting K in (2.23) and by observing that

* piel -laly da(t-z) , _2(t-2) .
/—wi T € ¢ o= iz g (2.26)

from (2.23) we obtain

a T , ooz .

% /~aL—tEI 'f‘k(I,f)}'j(t) dt:/zo(())) , —a<z<a, (2.27)
%0 2. ! I ;

k(x,t) :% / —x( \+u‘2(ig>//~t(0) . ];;. ) ezcx(t—z;) da | (2.28)

where the kernel &(r,t) is bcunded in the closed interval —a <z, t)<a .

From (2.3b) and (2.21) it follows that (2.27) must be solved under the following single-

valuedness condition:

/a_a gty dt =0 (2.29)

3. Method of Embedding

Even though the direct method used in the previous section yields only a limited
choice for representing the shear modulus u(y), keeping in mind that the mixed
boundar- value problems which are of practical interest tend to be generally local

perturbation problems. it may not be difficult to approximate u(y) with sufficient
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accuracy in the region of interest by using the representations (2.10), (2.11), (2.12) or
(2.16). To solve the problem one could also follow the technique developed by Varley
and Seymour [10] for transforming partial differential equations with variable
coefficients into equations with constant coefficients. The technique is more general in
scope but also is more complicated. Following [10] we first replace the equilibrium

equation {2.2) by

u(y)——'='—~ﬂ(y“%—y-‘= 57 (3.1)

_OF av_ _oF, (3.2)

we now express w and f in terms of 117{r.y) , F(zr.y) and a system of coefficient

functions w, (y) and f_ (y) as follows:

As V-n
.0 .
(r.y) = e - 1,
wlie.y) ; nll) C7U.\—n
A \ -n
flx.y) an R F. (3.3a,b)
U

Substituting from (3.3) into (3.1) and using (3.2) we obtain
aY (9w QY "M QW _ . DY (3%
foaﬁ(%) Zf"a" ”(0y> 5 Y (ay

N N-n
| y L ./ 0 _ ( W)-L ’u}l
Tll;(u‘n ; u’n—l af -n a KWy J

oY (awy, <~ oVt (oW _ Qi’_(a_w)
Uuogz/ﬁ('a?)"rﬂz Lbna \,_n(ar)“foay_v or

Y N-n
-1-2; + i) %(%%V)*'wfvf‘- (3.4a,b)
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An admissible set of functions. u. f, and w, satisfving (3.4) may be okttained from

o=k uy .
fo=pw,—puw, oy n=1.... N,
uy =0

~ f n=1, N

1 . ‘{"":""[.’.

N g/

(3.6)

Wy = [\—‘\' . f_\' = L\ .

where i’y and L\ are constant.
Equation (3.2) indicates-that 117 is a harmonic funtion which, for y >0 .,
-2 < r < x may be expressed as

pu i [T T -
= Ala) e7 1@ ITI do (3.7)
- X

From (3.3} and {3.7) it follows that

1 [ Y, / -tay-iaz
= / A{a) Hiy.al e da

WLy = 5o
RE B
where

N ,
Hiyc) = Z wiy) (- al ).\ -n
]

If we again define g(t) by (2.21), from (2.3) and (3.8) we obtain
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~lim £y e ) o~ laly+ialt-1)
y=0+ 27 / g‘\t)dt/ (\h a H) iaHi0.a) da

) - age<a (3.10)
By separating the singular kernel. frony 3,100 and (3.9) it may be shown that
m 1% peo o o e = S ’
<= ey gt at = —a<r<a, .
027 | VARRA L < (3.11)
‘ 2uyl ) t—r ~ T -iajy+ia(t-r)
hiz.yti = , S K-K_) o da
U'._J\Ur\ it— o - '/‘ o - X )
N Q(T)_}i 7 i
R 1y . w ; 0l ,
Kyoa=s ———— KN o= 2L+ i3.12
R H U oo o el @ ' )
By raking the imit 13.11) beconies
U7 o1 [ 1 Lo Tul
= Fhdntip oty di=——  ~g<zr<a. 3.13
A /_u\Lt—-z ol f“ ’ U < ( )
where the kernel &, 1s bounded in —e < (z. #) <aandis given by
S v
D uhi0)(—tla v
~ 1 [ 3) ) ‘ ia(t-z) 4o
e
Al" -y . —_ 2 _ \‘/ “‘. \ C
Fwad w0 (~jalt o
0
N .
- z w0y (- 7
- - /0 0 sinait—1) da (3.14)
QZ wa ) i—a T
3]
Equation (3.13) is again subject to the condition (2.29)
As an example consider the case of N =1. From (3.3) and (3.6) it may be seen
that




w=K . fi=1L, (3.15)
df, .
oKL (3.16)

where K and L, are arbitrary constants. The solution of (3.16) may be obtained as

KL >0
fJ: —_ \E%(Oﬁi([l\% ,*—\)/1|>,
ﬁ) = —\'[—\:11- t(lfl.].'(L"\‘Llw - }jﬂ) N (317)
KL, <0: |
) L : }r .
[ - — =L RS —l— 1) -
I, TR
f) = —\;‘(‘ !\,11 ({)<[‘l\\ —i- N\L}-r!jﬁ), (318)
Ep0: ==Ly =y (3.19)
Li=9: fy= -1 (3.20)

From (3.61 observing that f;== (&, (3.17) - 13.20) now provides four different functional
torms for which the mixeu boundary value problem under consideration would be
analyiically tractable. For example. assuming Ly = — 3Jg/tanhé, K, = - 3tanhé /i
and gy, = ¢, from (3.17b) .e find

Sitwy = quly) = i tanh(3y = &) /tann & (3.21)
N 1 1 ¢ ,
Wil = == === cothlJy + &r/cotic. (3.22)

"'ul y! Vit
Also. the Fredhoim kernel given by 13.14) becomes
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X s alt—:
kfz.t) =23 (coth¥§) - 1] [ g%a—cot—h(%—)da. (3.23)

It is clear that solutions for u(y) with greater number of arbitrary constants may
be obtained from (3.3) by considering cases for which .V >1 [10]. Technically the
greater number of arbitrary constants would provide a better representation of the given

shear modulus.

4. Examples

We first consider the application of the method described in Section 2 and give two
examples where we assume that ¢; > 0 or ¢, =0 (sce equations (2.9) - (2.16)). Thus,
we let the shear modulus have the form

. . R
ralply) =g e

oy (+.1)
th) uly) = uy(Jy+872 . y>0. (4.2)

where 3 may be positive or negative. For the two cases (4.1) and (4.2) the Fredholm
kernel expressed by (2.28) hecomes
=3 lt—zl , (X simalt—r1)

kfzti= 55—+ ——— da, (4.3)
Tt v a\a#-“’a"-{-J“’)

sl by == = 35 = —V
fleth =3 0 a da=135 7% 7=

)’/\M - 3 1t-z] ' (4.4)

From (2.27) and (2.28) it may be observed that the dominant part of the integral
cquation has only a Cauchy singularity. Consequently the solution of (2.27) has the
form {11}

—  —a<t<a, (4.5)
Nal - ¢
where G is unknown which is bounded in —¢ < t < a and non-zero at t = Fa.

The integral equation (2.27) is solved numerically by normalizing the interval
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and by observing that its fundamental function is the weight of Chebyshev polynomials
T.(s). Thus, defining

t=as, z=ar, (t) =of(s) = lL(_S—\._  h(s) = Glas) , 4.6
\11 _ Ql { a ( )

The unknown function 2(s) may be expressed as

~L S~ 4 s 7
h(S) - P(O) 20: ‘4n T?n -1 ‘\") (4 ‘)
where 4,. 4,, . . . are unknown constants and only the symmetric loading is considered,

that is, oy (£) = 0g( —z) and w{x,y) = w(-z1,y). By using the following properties of
Chebyshev polynomials

(s) ds . .
%/1 —1'1—()—33 C,_r). =12, —-l<r«l, (4.8)

-l{s—riNl =4t
|| /r n
_&jjip—(ﬁﬁ/ﬂJﬂ—l] n=01,...,|r| >1

and by substituting from (4.6) and (4.7) into {(2.27) we obtain

o

Z AH{U:,,_;(r)*.‘- 41'[2,,_1(1')] =ogy(ar), -1 <r<1, (4.9)
0
k ; @8 3
A‘wznql(r):%; 1 U,{ u(ar aD)} M ds . (410)
-1 k, (ar, as) 15

Also, by using the orthogonality conditions of T, (s) from (2.29), (4.6) and (4.7) it
follows that

4,=0. (4.11)

The simplest way of solving the functional equation (4.9) without sacrificing

accuracy appears to be truncating the series at n =N and using an appropriate
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collocation technique. In this case because of the nature of the problem it is necessary
to increase the density of the collocation points near the singular points r = ¥ 1. Thus,

these points may be selected as follows:

Ty (r,)=0, rizcos[,—zi."v (21-1)}. i=1,...,N. (4.12)
The linear algebraic equations obtained from (4.9) by substituting r=r;, 1=1, ..., N
would then give the unknown coefficients A, . . ., Ay.

One may note that in case (b) the kernel k; is known in closed form and by using

(4.4) and (4.10) the functional equation (4.9) may further be siruplified as follows:

o 1

zl: A, {U'.’n—Z (r)y+ 'Zn/\—-l sin(2n - 1>9J =oy(r), -l<r<l, (4.13)
where

A= %.C—l , 7= cosh . (4.14)

Even though the collocation technique mentioned above can also be used to solve (4.13),
in this case perhaps a more appropriate technique would he to use a weighted residual
method and reduce (4.13) to an infinite algebraic system. Thus, if we select the weight

functions U,, () v1 — r* and use the orthogonality conditions

0. i%j
% Jl v, (r) U, (r) 1= dr= ! g . (4.13)
-1 E' 1=
(4.13) may be reduced to
~
A=Y o, A, +d_,,i=12 ..., (4.16)
1
where
d = -2 /1 o0 (1) Uy (DT T=7 dr 12012, ., (4.17)
-2\ 1 __ 1 4.18
=% mmrimy e (419)
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The infinite system (4.16) can be solved by reduction and convergence is assured

provided the system is regular {12]. The condition for regularity is

x .
Z e, <1, i=12.... (4.19)

Performing the infinite sum, (4.19) may be expressed as

_7_r 8(2:-1) 1
?\{(41—3 1i-1) 2 Z ( >]—1)2 (21‘)‘2—(2]'—1)2)J<1' (+20)

In {4.20) the bracketed quantity is greatest for 1=1. Hence the condition of regularity

becomes

(£.21)

[ BY ]

\ < T i(£<
. Q (5

(2] H]

For A > 37/16 the systemn is quasi-regular in the sense that there exist an 7 for which the

infinite system beginning with the (i +1) st equation is regular.!

In the problem under consideration the physically important quantities are the
crack opening displacement w(x.0) and the shear stress o,.(r,0) along the interface,
particularly the stress intensity factor. From (2.21), (4.6) and (4.7) w(z,0) may easily

be obtained as follows:

x

w(z.0) = /I oty dt= - S L4, (DI 2, 1] <a. (4.22)
-a /l(O) 0

Referring to (2.23) and (2.27) it may be observed that the left hand side of the integral

equation represents o,.(zr,0) for |z] >« as well as for |r| < a. Thus, by substituting

from (4.6) - (4.8) into (2.27

"There seems to be a curious analogy between the antiplane shear problem for a half plane

7). for z = ar and Ir | > 1 we obtain

with the shear modulus given by (4.2) and the cover plate problem described in [13]). In [13] the cover
plate was approximated by a membrane of thickness h and elastic constants g, and x, , and A ‘vas the
stiffness parameter defined by A = g, (1+x)/[2ph (14 «,)] where p, and x, are the elastic
constants of the substrate. In the two problems the analogous physical quantities are the interface

shear stress 7.y (in (13]) and u (0) o (s) (see {2.21) and (4.6).
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S — 7 ' = 3
5 -1~ - 1=
- | - , -dn-1
BN ‘Tf//rl f}'" 3 ,\
—-—Z.‘ln — - T—_ ; N =k
U NTT =17 -
X N, Q
1 (L Ton_afs) -
- = Z .-{”| ar, a 3 (t 23)
) v -1 Nl =5

- hm ST LA, {9
A3— I—'doo\-yl“b",EI:'.L.U . (4_4)

S B : ot 1 1
trom (4231 1t mayv easiiv be shown tla

7
h=-ay 4, (1.25)
U

As a third example we consider one of the expressions found for u(y) in Section 3,

_ coth®i 3y—~¢i . sunlt 3y = &)
WYl = g5 # =

£>0.0< 3 <o (4.26)

The problem is solved by simply replacing tle kernels k, or k, given (4.3) or (4.4) by k,

found 1n Section 3 and by following the procedure outlined in this section.
5. Results and Discussion

Based on simple physical considerations it mayv be observed that the solution given
in this study for a nouhomogeneous lLialf plane having a shear modulus p(y) , y>0, is
valid also for the corresponding infinite medium in which y =0 is a plane of material
svmmetry, that is, u( —y) = puly), - < y < . Thus, in the examples considered if we
let the material nonhomogeneity paraineter 3 be zero in (4.1), (4.2) and (4.26), u
becomes a constant u10) and the probiem: reduces to that of a homogeneous plane

having a crack which is subjected to svmmetric crack surface tractions. In fact from
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{2.17), (2.27) and (2.28) it may be seen that for 3 =0 we have A= a | and 4'(0) =0

giving k(r.t) = 0. For example, if oy(x) = - p,, from (4.6) - (4.11) and (4.23) it follows
that,
My 1=0, 4= —py. A, =0, > 1), glov= -8 L 1z] <q,
O Nar-1r°
, zf .
Uy:(l?vo/zpo(, : 1_1) Iy =py Na (5.1)
NE—at

/AT sz a3
Uy:(r.t)):%;r—w'—az o F-\FF -1 )J,:c>a. (5.2)
\' -— -

giving &y = p,va,/2 (see Table 11. Also. in the third example considered in Section 3,
from (3.23}) it is seen that for J=0 4, c.¢)=0 and (3.13) reduces to an integral

equation for a homogencous material having the shear modulus p(0).

For a plane with various forms of nonliomogeneities considered in Sections 2 and
3 the calculated stress intensity factors ave given in Tables 2 and 3. In these results p,
and p, again refer to the loading paraincters defined in Table 1. In a limited way the
results for uniform loading arc al<o displaved in Figures 2-4. The materials considered
in these three examples exhibit some distinct features. The hyperbolic functions used in
Table 2 and Fig. 2 to represent e shear modulus have constant asymptotic values for
y—~>c, namely ug, tanl?§ and pg/ coth*&. where uy = u(0) (see the insert in Fig. 2). In the
parabolic distribution for pfy) assumed in Fig, 3 and Table 3, for 3 < 0 y becomes zero
at y =¢/3 and hence the results correspond to a nonhomogeneous layer of finite
thickness with vanishingly decreasing shear modulus away from the interface. For this
reason in this example the stress intensity factors corresponding to 3 <0 are
considerably greater than that of the other examples shown in Figures 2 and 4 and

Tables 2 and 3 in which u{y) is also a monotonically decreasing function.

Let us now examine the asymptotic behavior of the stress intensity factor k; as
3= = x. First, from (4.6). (4.7} and (4.23) it can be seen that k;(a) may also be

expressed in the following alternate form:

-16-




ky(a) = —bm  u(0) (2(a — 1) glz) . (5.3)

In the examples given in Table 3 and Figures 3 and 4, it may now be seen that as
3= +oc the stiffness of the medium would increase indefinitely and, under loadings of
finite magnitude, the crack opening displacement or g(z). and consequently, k;(a) would
tend to zero. these physically expected trends may be observed in Figures 3 and 4 and
in Table 3. Similarly in the example given in Table 3 and Fig.4 for pu(y) = peezp(23y),
the stiffness of the medium would decrease indefinitely as .3 + -0, and consequently
ka(a) would tend to infinity. Also, for 3 <0 and pu(y)/ue = (3y + 6)%/6% the “thickness”
of the medium y, = — 6,3 and as a result its stiffness would decrease indefinitely as

J= -, again causing k3 a) to approach infinity.

The examples considered n Table 2 and Fig. 2 are quite different and somewhat
more prac:ical than the examnples shown in Table 3 in that for [B-+00 the medium
becomes homegencous with a shear modulus ;1(0)/coth®S or u(0)/tanh®. Thus, in the
limitng case of 3 = ¢ the stress mtensity factor ought to be independent of the shear
modulus and should have the values given in Table 1. This trend, of course, is not
chserved in Table 2 and Fig. 2. Tle explanation of the discrepancy may be found in
the fact that, becouse of the discontinuous change taking place in p(0) at B = oo, the
only physical quantity that should be expected to vary continuously as 3-sco is the

strain energy release rate which may be defined by and expressed as

dE +d ) T"}cz a
G = EQ dE, = %/Z aay:(.r.())w{r —da0)dz, G= 4:((0)) (5.4)

where E, is the externally added or internaly released energy that is available for
fracture. Phyvsically the problem imay be visualized as a crack problem for a
homogeneous half plane bounded to a rigid substrate through a thin nonhomogeneous
laver. The objective is to determine the asymptotic behavior of the solution as the layer

thickness approaches zero.

To gain a better insight to the problem we consider the simpler example of
piecewise homogeneous medium shown in Fig. 5. The modelll crack problem described
by Fig. 5 is that of two idendical homogeneous half spaces having the shear modulus 4,
which are bonded through a homogeneous layer of shear modulus g, and thickness 2h.

The laver contains a crack of length 2a in the plane of the symmetry. Following a
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technique described in section 2. the mixed boundary value problem may easily be

reduced to the following singular integral equation [14]:

¢ . oz
%/_a{t—lx_//' ky(z, t)}f](t) dt = ;)1(1), -a<z<a,

-=ﬂl_#2 I " =9/’.>C e—?c\h . _ . .
L TRESTR (z,t) =2 0 —_——-y'c'“‘" " 1.sma(t r)da (5.5a,b)

First, we simply note that for h = oo the problem becomes one of a cracked
homogeneous plane with shear modulus g, for which the solution is given by (5.1) and
(5.2) and Table 1, specifically

ky(a Gla) Tpia
= — : —— =1 —— = =
UO(I) Po IR o 1 GO 4#1 y
2 kyla) (a) . Tpia -
wole)= —pfE): pd = Sl=02, g =128 (5.6,b)

Referring to (3.4) we note that the straiu energy release rate § calculated in this article
and given in various figures and tables and in equations (5.4), (5.6) and elswhere
correspond to one quarter of the total enwrgy released in a cracked medium such as that

shown in Fig.3. In the other limiting case of 10 it may easily be shown that

t—x

fy(z.t) - AT “’f( L ) (5.7)

and (3.3a) becomes

-

LA A =y TR A (5.8)

which is the integral equation for a homogencous medium having the shear modulus g,.
Thus, from (3.8) it follows that

G(a) Tpla g
oo(2) = = po G L, G= 41}12 = fu;go’
2 a . Tpla
oolz) = — pz(‘ar-) : 9%-)- =0.23 §;= 4[:32 = ﬁ—;@l (5.9a,b)
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Referring now to Fig.3. we obscrve that as long as A >0, the stress intensity

factor and the strain energy release rate are defined by

mk3(a)

ky(a) = -tm  p(0) 20a—2) g(z), Gla)= T

T—a

, (5.10)

where ¢(z) is obtained from (3.3a). For the loading conditions given in Table 1 and for
/e =2 and py/py = 0.5 these calculated results are given in Table 4 and are also
partially shown in Fig.6. The limiting values of G(a) for h»oc and h=+0 and kz(a) for
h-+> are clear and unambiguons aud are given by (3.6) and (3.9), respectively. From

(5.10) (3.9) and (3.6) 1t 1s also scen that for h = +0

hia) Tpia , nn
Gla) = 4;‘1 =G,= -i[:.': o hyia) = \fl_i[’u\r‘_’-
whila) o Ne TP ) 1 -
Gla) = e 0.25 =G =0.25 Ky kyla) = S\ILP2Va- (5.11a,b)

Table 4 and Fig.6 show that these are indeed the limiting values of the results obtained

from (5.3a) and (3.10).

Considering the fact that for =0 the problem reduces to that of a homeogeneous
plane, the limiting value of /%5 still appears to be somewhat paradoxical. The
explanation of the appareut discontinuity in by at h = +0 lies in the fact that for very
small %, A5 obtained from the integral equation (3.3a) and shown in Table 4 is the
measure of near field quantitics. Far ficld quantities should ,of course, be that of the
homogeneous infinite medium. Without a lengthy singular perturbation analysis this
can be shown by examining, for example, the crack opening displacement w(z,0) very
near the crack tip as h anproaclics zero. Tlie results calculated from (5.5a), (4.5) and
(4.22) are shown in Figures 7 and 3. Figures 7a and 8a show w(z,0) and G(z) for various
values of u/p, and h/a. From Fig. Ta it is scen that away from the crack tip as h-+0
w{z,0) converges to the corresponding liomogencous infinite plane values (indicated by
h =0). Fig. 7b shows a magnificd version of w(z,0) near the crack tip for p,/p, =2.
Note that w ~ py/p. The curves marked by (h/a =0, py/p, =2) and by p; = u, are
simple ellipses. As expected, away from the crack tip the curves marked by small
nonzero values of A/a are seen to converge to h/a =0 ellipse. However, near the crack

tip the behavior of these curves is quite different and as h-0 they seem to have a
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different slope than that of the corresponding ellipse. These may be seen somewhat
better in Fig. 8 showing G(z). G(a) being the measure of ks(a) (see Eq. (4.3)). From
{3.10a) note that for h =0, that is, for the homogeneous plane p =y,
ky = —u,G(a)/va, whereas for h >0 ly= —pu,G(a)/va. Hence. the straight line
corresponding to h = 0 gives

r
G(r)=—AE#O—11-' Po

= -2 ks(a) = pyva. (

o=
(1}
—
(%]

p—

The values of G(a) for nonzero values of & shown in the figure give the stress intensity
factors listed in Table 4. The figure siows that at A = +0 G(z) would have a spike the
value of which seems to approach the independently calculated value of m The
distribution of G(x) also shows the expected “pinching” of the crack opening

displacement very near the crack tip, as exlibited by two inflexion points.

Figures 9 and 10 give some sample results showing the influence of the material
nonhomogeneity parameter J on the crack opening displacement w(z,0), -a<z<a. As
3 increases, in both examples the material stiffness also increases. Consequently, in

hoth cases the crack opening dizplacenient is seen to decrease for increasing values of 3.

Based on the results given in Tables 2 and 3 one may conclude that in fracture
mechanics analysis involving nonliomogencous materials the “crack driving force” (as
measured by the stress intensity factors or the strain energy release rate) may differ
quite considerably from the values given by the corresponding homogeneous materials.
One may also note that in diffusion problems the square-root nature of the flux

singularity at the crack tip is not influenced by the material nonhomogeneity.
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Table 1. Loading conditions used and the corresponding

stress intensity factors for a3=0.

- pz(r/a)z

k3(a) poNa

%Pz\ﬁI

Table 2. The variation of stress intensity factors for various

loading conditions shown in Table 1., 6 = 1.

_coth®(3y + &)

tanhg(ﬁy +6)

ply) o = ot (3) wy) i = tani(0)
1 3a , Az__ k.}_ ks ks
; 1 Pova | pNa | Pova poNa
| | | |

|
10.0 | 1.00 0.5 1.00 0.5
0.1 | 1.028 0.508 0.972 0.492
0.2 | 1.049 0.514 0.951 0.4S6
0.4 | 1.081 0.524 0.922 0.476
0.5 | 1.093 0.528 0.911 0.473
10.6 | 1.104 0.524 0.901 0.469
l 0.7 | 1.114 0.534 0.893 0.466
0.5 | 1.123 0.538 0.886 0.464
0.9 | 1.131 0.541 0.879 0.462
1.0 | 1.138 0.543 0.874 0.459
1.5 | 1.167 0.554 0.853 0.450
2.0 | 1.187 0.562 0.839 0.444
25 | 1.202 0.569 0.828 0.439
3.0 | 1.214 0.575 0.821 0.434
1.0 | 1.231 0.584 0.S10 0.428
10.0 | 1.276 0.611 0.783 0.408
~ | 1.313 0.657 0.762 0.381
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Table 3. The variation of stress intensity factors for various

loading conditions shown in Table 1., 6 = 1.

) po =672 (3y + &7 ply) o = €27
P S T O .Y
PoNa pavNa DoNa paNa
~1.0 | 5.48 1.562 1.451 0.636
~0.8 12397 | 0.394 1.397 0.612
-0.6 % 1.773 : 0.693 1.303 0.337
0.4 | 1.354 0601 | 1214 0.560
02 1 1133 1 0342 1.113 0.532
0.1 | 1.069 0.519 | 1.059 0..516
0.0 | 1.00 (1 0.3 1.00 0.5
0.1 | 0.941 | 0433 0.933 0.482
0.2 | 0.390 0.469 0.369 0.463
0310346 | 0.436 0.810 0.447
| 0.4 | 0.307 0.444 0.753 0.431
05| 0773 0.434 0.712 0.418
L 0.6 0.742 0.424 0.671 0.403
03] 0.601 0.407 0.604 0.384
1.0 | 0.647 0.392 0.550 0.366
1.5 | 0.563 0.362 0.457 0.331
2.0 | 0.307 0.340 0.397 0.305
2.5 | 0.463 0.322 0.356 0.285
3.0 | 0.429 0.306 0.324 0.268




Table 4. The stress intensity factors and the strain energy
release rates in two homogeneous = 'f planes bonded

rhrough a homogeneous laver containing a crack (Fig. 3).

iy =2 ty/py=1/2 'l
. | s UG | o6 | pm| | 9% | uG l
0.0 14142 0071 20 1 05 o.roni 0.3336| 0.5 0.125
0005 133 0.651 0 1.920 | 0.464 | 0.716 | 0.364 | 0513 | 0.133
0011385 0674 | 1918 0434 | 0.719 } 0.369 | 0.517 | 0.137
002 3TS 0081 1904 0437 | 0725 | 0373 | 0326 | 0.143
00+ 1354 , 0636 1333 | 0405 | 0.737 | 0392 | 0.544 | 0.154
005 1313 | 0.606 | 1723 | 0267 | 0738 | 0.412 575 | 0.169
0.1 1295 | 0396 | 1.677 | 0355 | 0.767 | 0.419 | 0.389 | 0.173
0.2 1223 ' 0.364 { 1507 | 0.318 | 0.805 | 0.442 | 0.648 | 0.196
04 LMG6 0537 | L3IT | 0238 | 0859 | 0.464 739 | 0.213
05 1099 0324 0 1210 | 0.273 | 0.807 | 0475 | 0.805 | 0.223
ps o 1OTL 0517 | L1438 | 0263 | 0923 | 0.431 52 | 0.232
L0 1953 . 0513 | 1103 | 0.203 | 0042 | 0436 | 0.887 | 0.236
< .0 03 |10 0.25 | 1.0 0.5 | 0.25

{ |




Fig.1. The geometry of the problem
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Fig.2. Stress intensity factor and Strain energy release rate for
a nonhomogeneous half plane under uniform antiplane shear
loading, 0,,(z,0) = ~ po, Go = Tpja/4no,

A: p(y) = potanh®(By + §)/tanh?s,

B: u(y) = pocoth’(By + §)/coth?s, § = 1.
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Fig.3 Stress intensity factor for a nonhomogeneous half plane
subjected to umiform crack surface traction
oy20) = — po, shear modulus u(y) ko = (By +6)/6%, 5 =1.
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Fig.4 Stress intensity factor for a nonhomogeneous half plane
subjected to uniform crack surface traction 7y(z,0) = — p,,
w(y) o = €Y.
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Fig.5 The symmetric model crack problem for two
homogeneous half spaces bonded through a homogeneous elastic

layer.
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Fig. 6 Stress intensity factor and strain energy release rate
as a function of layer thickness to crack length ratio ,
GO = Tpga/4"h
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w(z,0)

0.0 0.2 0.4 0.6 0.8 1.0

Fig.7a Crack surface displacement in a layer bonded to a

semi-infinite homogeneous plane under uniform crack

Po@

surface shear loading 0y(z,0) = —py , wo = yrrl

0.90 0.95 1.00

z/a
Fig.7b. Crack surface displacement in a layer bonded to a
semi-infinite homogeneous plane under uniform crack

surface shear loading 0y,(z,0) = — py ;wo = %92.
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Fig.8a. G(z)vsz/a, pp/py =2.0 ,Go = — poa/p-

0.90

0.95 1.

z/a

Fig.8b. G(z) vs z/a ,u,/p; = 2.0, Gy = — pea/ ;-
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Fi_ 7 Crack surface displacement in a semi-infinite

nonhomogeneous plane under uniform crack surface shear
loading 0,,(2,0) = —po;  p(y)/so = tanh?(By + 6)/tank?(8),
6 = 1,wo = apy/po.
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~1.0 -0.5 0.0 0.5 1.

Fig.10 Crack surface displacement in a semi-infinite

nonhomogeneous plane under uniform crack surface shear

loading a’yz(:z:,O) = —po; #(y)/po= C2ﬁy:wo = apo/Mo-
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